
Intro to git && Github

Workshop Outline

Talk:
• Git and Github

Workshop:
• Github basics
• Using RStudio for version control and collaboration

Requirements:
• Github account (https://github.com)
• RStudio (https://rstudio.cloud)

https://github.com/
https://rstudio.cloud/

git

a free and open source distributed version control system

VERSION
CONTROL

Why use version control?

Track changes to the code, while enhancing
communication and collaboration between

team members.

GIT VS GITHUB (GITLAB, BITBUCKET)

GitHub Flow

Code lives on GitHub

pull push

pull request

push

Can handle complex changes

8 things to do with git and github

Creating a new repository
Cloning a repository
Branching
Committing changes
Pull requests
Collaboration
Issue tracking
Continuous integration

Creating a new repository

You can create a new Git repository on GitHub and start tracking your code changes by using
git commands.

Cloning a repository

Clone an existing Git repository to your local machine to get the
code and start working on it.

Branching

You can create a new branch in Git to work on a new feature or fix a bug, without
affecting the main codebase.

Commit changes

You can commit changes to your local repository and push them to
the remote repository (/branch) on GitHub.

Pull requests

You can use pull requests to suggest changes to a repository or to merge a
branch into the main branch.

Collaboration

GitHub offers a social media-like experience with its commenting features, allowing
developers to collaborate on issues, pull requests, and code reviews in real-time,
making it easier to communicate and work together as a team.

Issue tracking

You can use GitHub issues to track bugs, feature requests, and other tasks
related to your project.

Continuous integration & deployment

You can use GitHub Actions to automatically build, test, and deploy your code
whenever changes are made to the repository.

What constitutes a good PR?

• It will be a complete piece of work that adds value in some way.
• It will have a title that reflects the work within, and a summary that helps to

understand the context of the change.
• There will be well written commit messages, with well crafted commits that tell

the story of the development of this work.
• Ideally it will be small and easy to understand. Single commit PRs are usually easy

to submit, review, and merge.
• The code contained within will meet the best practises set by the team wherever

possible.

https://gist.github.com/mikepea/863f63d6e37281e329f8

https://gist.github.com/mikepea/863f63d6e37281e329f8

Some git commands

GETTING AND
CREATING
PROJECTS

git init [directory]

• Create an empty Git repository or reinitialize an existing one

• This command creates an empty Git repository - basically a .git directory with
subdirectories for objects, refs/heads, refs/tags, and template files. An initial
branch without any commits will be created (see the --initial-branch option
below for its name).

git clone <repository>

• Clone a repository into a new directory

• Clones a repository into a newly created directory, creates remote-tracking
branches for each branch in the cloned repository (visible using git branch
--remotes), and creates and checks out an initial branch that is forked from the
cloned repository’s currently active branch.

BASIC
SNAPSHOTTING

git add [<pathspec>…]

• Add file contents to the index

• This command updates the index using the current content found in the
working tree, to prepare the content staged for the next commit. It typically
adds the current content of existing paths as a whole, but with some options it
can also be used to add content with only part of the changes made to the
working tree files applied, or remove paths that do not exist in the working
tree anymore.

git status [<pathspec>…]

• Show the working tree status

• Displays paths that have differences between the index file and the current
HEAD commit, paths that have differences between the working tree and the
index file, and paths in the working tree that are not tracked by Git (and are
not ignored by gitignore[5]). The first are what you would commit by
running git commit; the second and third are what you could commit by
running git add before running git commit.

https://git-scm.com/docs/gitignore

git diff [<path>…]

• Show changes between commits, commit and working tree, etc

• Show changes between the working tree and the index or a tree, changes
between the index and a tree, changes between two trees, changes resulting
from a merge, changes between two blob objects, or changes between two
files on disk.

git commit [<pathspec>…]

• Record changes in the repository

• Create a new commit containing the current contents of the index and the
given log message describing the changes. The new commit is a direct child of
HEAD, usually the tip of the current branch, and the branch is updated to point
to it (unless no branch is associated with the working tree, in which case
HEAD is "detached" as described in git-checkout[1]).

https://git-scm.com/docs/git-checkout

SHARING AND
UPDATING
PROJECTS

git fetch [<refspec>…]]

• Download objects and refs from another repository

• git fetch is the command that tells your local git to retrieve the latest
meta-data info from the original (yet doesn't do any file transferring. It's more
like just checking to see if there are any changes available).

git pull [<repository> [<refspec>…]]

• Fetch from and integrate with another repository or a local branch

• Incorporates changes from a remote repository into the current branch. In its
default mode, git pull is shorthand for git fetch followed by git merge
FETCH_HEAD.

git push [<repository> [<refspec>…]]

• Update remote refs along with associated objects

• Updates remote refs using local refs, while sending objects necessary to
complete the given refs.

BRANCHING
AND MERGING

git branch [<pattern>…]

• List, create, or delete branches

• If --list is given, or if there are no non-option arguments, existing branches are
listed; the current branch will be highlighted in green and marked with an
asterisk. Any branches checked out in linked worktrees will be highlighted in
cyan and marked with a plus sign. Option -r causes the remote-tracking
branches to be listed, and option -a shows both local and remote branches.

git checkout [<branch>]

• Switch branches or restore working tree files

• Updates files in the working tree to match the version in the index or the
specified tree. If no pathspec was given, git checkout will also
update HEAD to set the specified branch as the current branch.

git merge [<branch>]

• Join two or more development histories together

• Incorporates changes from the named commits (since the time their histories
diverged from the current branch) into the current branch. This command is
used by git pull to incorporate changes from another repository and can be
used by hand to merge changes from one branch into another.

git tag <tagname>

• Create, list, delete or verify a tag object signed with GPG

• Add a tag reference in refs/tags/, unless -d/-l/-v is given to delete, list or verify
tags.

git checkout tags/<tagname>

• This will checkout out the tag in a 'detached HEAD' state. In this state, "you
can look around, make experimental changes and commit them, and [discard
those commits] without impacting any branches by performing another
checkout".

UNDO

git restore <pathspec>…

• Restore working tree files

• Restore specified paths in the working tree with some contents from a restore
source. If a path is tracked but does not exist in the restore source, it will be
removed to match the source.

• git restore --source 7173808e script.R

Markdown

a lightweight markup language for creating formatted text using a plain-text editor.

Element Markdown Syntax

Heading # H1
H2
H3

Bold **bold text**

Italic *italicized text*

Blockquote > blockquote

Ordered List 1. First item
2. Second item
3. Third item

Unordered List - First item
- Second item
- Third item

Code `code`

Horizontal Rule ---

Link [title](https://www.example.com)

Image ![alt text](image.jpg)

https://www.markdownguide.org/basic-syntax/#headings
https://www.markdownguide.org/basic-syntax/#bold
https://www.markdownguide.org/basic-syntax/#italic
https://www.markdownguide.org/basic-syntax/#blockquotes-1
https://www.markdownguide.org/basic-syntax/#ordered-lists
https://www.markdownguide.org/basic-syntax/#unordered-lists
https://www.markdownguide.org/basic-syntax/#code
https://www.markdownguide.org/basic-syntax/#horizontal-rules
https://www.markdownguide.org/basic-syntax/#links
https://www.markdownguide.org/basic-syntax/#images-1

R Markdown

Combine R code and Markdown

https://r4ds.had.co.nz/r-markdown.html

https://r4ds.had.co.nz/r-markdown.html

